Abstract:
We demonstrate that collective continuous variables of two species of trapped ultracold bosonic gases can be {Einstein-Podolsky-Rosen-correlated} (entangled) via inherent interactions between the species. We propose two different schemes for creating these correlations–a dynamical scheme and a static scheme analogous to two-mode squeezing in quantum optics. We quantify the correlations by using known measures of entanglement and study the effect of finite temperature on these quantum correlations.